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Machida and Namiki developed a many-Hilbert-spaces formalism for dealing 
with the interaction between a quantum object and a measuring apparatus. Their 
mathematically rugged formalism was polished first by Araki from an operator- 
algebraic standpoint and then by Ozawa for Boolean quantum mechanics, which 
approaches a quantum system with a compatible family of continuous 
superselection rules from a notable and perspicacious viewpoint. On the other 
hand, Foulis and Randall set up a formal theory for the empirical foundation of 
all sciences, at the hub of which lies the notion of a manual of operations. They 
deem an operation as the set of possible outcomes and put down a manual of 
operations at a family of partially overlapping operations. Their notion of a 
manual of operations was incorporated into a category-theoretic standpoint into 
that of a manual of Boolean locales by Nishimura, who looked upon an operation 
as the complete Boolean algebra of observable events. Considering a family of 
Hilbert spaces not over a single Boolean locale but over a manual of Boolean 
locales as a whole, Ozawa's Boolean quantum mechanics is elevated into empirical 
quantum mechanics, which is, roughly speaking, the study of quantum systems 
with incompatible families of continuous superselection rules. To this end, we 
are obliged to develop empirical Hilbert space theory. In particular, empirical 
versions of the square root lemma for bounded positive operators, the spectral 
theorem for (possibly unbounded) self-adjoint operators, and Stone's theorem for 
one-parameter unitary groups are established. 

0. I N T R O D U C T I O N  

Some researchers on the foundations of quantum mechanics have dis- 
cussed many-Hilbert-spaces formalisms, which are to be distinguished strictly 
from Everett's (1957) eccentric many-universes interpretation of quantum 
mechanics. Such attempts are gathering momentum, since macroscopic quan- 
tum phenomena are now commonplace and modern technology is realizing 
what were once reckoned as mere Gedanken experiments. Among others, 
Machida and Namiki (1980) installed such a formalism so as to reconcile 

Institute of Mathematics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan. 

1175 
f~)20~7748/96/0600-1175509.50/0 © 1996 Plenum Ptlbli~hing Cnq~omtion 



1176 Nishimura 

the microscopic and macroscopic viewpoints of the physical world, in particu- 
lar, to settle decisively such famous paradoxes concerning the so-called reduc- 
tion of wave packets as that of Einstein, Podolski, and Rosen (1935). Their 
mathematically somewhat rugged formalism was refined from the standpoint 
of operator algebras by Araki (1980), who considered macroscopic observ- 
ables to be represented by the center of the algebra of microscopic observables. 
Finally, Ozawa (1986), remarking that the projection lattice of the center of 
avon Neumann algebra is a complete Boolean algebra and so the techniques 
designated Boolean-valued analysis after Takeuti (1978) are available, pol- 
ished their ideas into Boolean quantum mechanics, from which we can recover 
Machida and Namiki's original picture through the process of averaging. 

Foulis and Randall (1972; Randall and Foulis, 1973) have provided a 
formal theory for the foundation of all empirical sciences, in which the notion 
of a manual of  operations plays a pivotal role. They regard an operation as 
the set of possible outcomes, which enjoys classical logic and classical statis- 
tics, and consider a manual of operations to be a family of partially overlapping 
operations. In Nishimura (1993b), by regarding an operation not as the set 
of possible outcomes, but as the complete Boolean algebra of observable 
events, we got the notion of a manual of  Boolean locales, over which empirical 
set theory subsists. 

Machida and Namiki's (1980) many-Hiibert-spaces formalism deals only 
with a family of Hilbert spaces over a single operation in the terminology 
of Foulis and Randall (1972; Randall and Foulis, t973) or over a single 
Boolean locale in our terminology (Nishimura, 1993b). If we want to set up 
empirical foundations of quantum mechanics, we are obliged to treat a kind 
of many-Hilbert-spaces formalism over a manual of operations or rather over 
a manual of Boolean locales, so that Ozawa's (1986) Boolean quantum 
mechanics should be incorporated into empirical quantum mechanics, which 
is the main purpose of this paper. 

The organization of the paper is as follows. After presenting preliminaries 
on such fundamental notions as a manual of Boolean locales in Section 1, 
we discuss empirical Hilbert spaces along the lines of Nishimura (1995b, 
1996a, b, n.d.-a) in Section 2. Sections 3 and 4 are devoted to bounded and 
unbounded operators on empirical Hilbert spaces respectively. In particular, 
an empirical version of Stone's theorem is established. The final section deals 
with empirical quantum mechanics. 

We close this introduction with a few notational and terminological 
comments. We denote by N, R, R, and C the sets of natural numbers, real 
numbers, extended real numbers (i.e., real numbers and -+~), and complex 
numbers, respectively. A Hilbert space always means a complex Hilbert 
space. An isometric linear mapping of a Hilbert space into another is called 
a Hilbert map. A closed linear subspace of a Hilbert space H is called a Hilbert 
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subspace of H. Given a category A, the classes of objects and morphisms of 
A are denoted respectively by Ob A and Mor A. If Mor A is a set, the 
category A is called small. 

1. PRELIMINARIES 

1.1. Universes 

To dodge the famous paradoxes of set theory or to paper them over, the 
usage of a universe is a common practice in category theory. Roughly speak- 
ing, a universe is a well-behaved set closed under any standard operation of 
set theory. For the exact definition of a universe, see e.g., MacLane (1971, 
Chapter I, §6), Schubert (1972, §3.2), or Borceux (1994, Vol. 1, §1.1). The 
existence of a universe is disputable from the standpoint of axiomatic set 
theory, but we assume in this paper that there exists a universe V0. The class 
of all sets is denoted by V. Sets of V0 are called smallo. The adjective "small0" 
is applied to structures whose underlying sets are small0. By way of example, 
a category C is called small0 if the class Mor C of  morphisms of  C is a 
small0 set. We denote by BEns and BEns0 the category of sets and functions 
and its full subcategory of small0 sets, respectively. 

1.2. Manuals of Boolean Locales 

The category of complete Boolean algebras and complete Boolean homo- 
morphisms is denoted by Bool. The dual category of Bool is denoted by 
BLoc. Its objects are called Boolean locales. If we regard a Boolean locale 
X as an object of Bool, it is denoted by ~(X) ,  though X and ~ (X)  denote 
the same entity. The opposite of a morphism f: X ---> Y of BLoc, which is a 
complete Boolean homomorphism from ~(Y) to 9 (X) ,  is usually denoted 
by ,_@(f). A morphism f of BLoc is called an embedding if ~'(f) is surjective. 
Two embeddings f: Y --> X and g: Z ---> X with the same codomain X are 
said to be equivalent if there exists an isomorphism h: Y ----> Z in BLoc with 
f = g o h. Given a Boolean locale X and x ~ 9 (X) ,  the morphism i.~: XIx 
---> X is an embedding, where 9 ( X l x )  = 9 ( X ) I x  = {y c ,~'(X)ly --< x} 
and ~(ix)(y) = x ^ y for each y ~ 9 (X) .  Any embedding into X is equivalent 
to ix for a unique x E ~(X) .  A Boolean locale X is said to be trivial if ~ ( X )  
is a trivial Boolean algebra, i.e., if ,5~(X) consists of  a single element. Since 
the category Bool is complete, the category BLoc is cocomplete. 

Let ~),1~ be a small subcategory of the category BLoc. A diagram of 
BLoc is said to be in ~ if all the objects and morphisms occurring in the 
diagram lie in ~)2~. Boolean locales X and Y in ~.~ are said to be ~-orthogonal, 
in notation X l ~  Y, if there exists a coproduct diagram X _L> Z ~ Y of 
BLoc lying in ~)~. A Boolean locale X in ~ is said to be ~-maximal if for 
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any Boolean locale Y in ~J)~, X ±:v~ Y implies that Y is trivial. Boolean locales 
X and Y are said to be ~3)~-equivalent, in notation X =,.re Y, provided that for 
any Boolean locale Z in ~2)~, X Z,.v¢ Z iff Y &,.re Z. Obviously ~2R-equivalence 
is an equivalence relation among the Boolean locales in ~ .  We denote by 
[X]:o~ the equivalence class of X with respect to ~).)~-equivalence. A coproduct 
diagram {Xh -~ X}a~a of BLoc lyi0g in ~.R is called an 9Y~-coproductdiagram 
if for any diagram of the form {Xa J-~ X' }x~a lying in ~3~, the unique morphism 
g: X ---) X' of BLoc with g o f~ = f;, for all ~ E A belongs to ~2~, in which 
X is called an ~)~-coproduct of X~,'s and is denoted by ]~,~,x G,.v~ X~,. If A is 
a finite set, say, A = { 1, 2}, then such a notation as X~ O,17~ X2 is preferred. 
If A is empty, X = ]~x~A O,~j~ Xx is no other than a trivial Boolean locale 
which is an initial object in ~)2~. In this case X is called an ~3)~-trivial Boolean 
locale. An embedding f: X ---) Y in ~2)~ is called an ~.)~-embedding if there 
exists an embedding g: Z ~ Y in ~),R such that the diagram X 2_> y 4-  Z is 
an ~ -coproduc t  diagram. In this case X is called an ~)~-sublocale of Y. Given 
an ~.~-sublocale Y of a Boolean locale X in ~ ,  the ~)~-embedding of Y into 
X is equivalent in BLoc to the canonical embedding i~: XIx  --~ X for a 
unique x ~ ~ ( X ) ,  in which Y is denoted by X,. 

A manual of Boolean locales is a small subcategory ~3~ of the category 
BLoc satisfying the following conditions: 

(1.2.1) For any pair (X, Y) of  Boolean locales in ~,)'2, there exists at 
most a sole morphism from X to Y in s))~. 

(1.2.2) Every trivial Boolean locale in ~ is ~3~-trivial. 
(1.2.3) For any Boolean locales X, Y in ~2.~, if there exists a morphism 

from X to Y, then Y ± ~  Z implies X L,.v~ Z for any Boolean 
locale Z in ~.)~. 

(1.2.4) For any small family {X~,}X~A of Boolean locales in ~ with 
Xx ± ~  Xx, for any h v~ ~', there exists a Boolean locale Z in 
~ with Z = £x~a ~:v~ Xx. In particular, there exists an ~ -  
trivial Boolean locale in ~)32. 

(1.2.5) Every trivial Boolean locale in ~3~ is ~.R-trivial. 
(1.2.6) For any Boolean locale X of the form E~,~A ~,.V~ X~ and any 

Boolean locale Y in ~.)~, Xh ±,.o~ Y for all ~ ~ A implies X ±,.v~ Y. 
(1.2.7) For any Boolean locales X and Y in ~33~, X =:v~ Y iff there exists 

a Boolean locale Z in ~.)~ such that X ± ~  Z, Y ± ~  Z, and 
both of X ~,.o~ Z and Y ~,.0¢ Z are ~3)2-maximal. 

(1.2.8) For any commutative diagram 

X )Y 

of BLoc, if f is in ~)? and h is an ~)~-embedding, g is in ~3)~. 
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(1.2.9) For any object X in ~ and any embedding f: Y --~ X in BLoc, 
there exists an ~)J2-embedding f': Y' ~ X in ~)~ such that f and 
f' are equivalent in BLoc. 

Given a manual ~)37 of Boolean locales, we denote by _~(~J)~) the set 
{ [X]:t,~lX E Ob ~)~ }. 

Theorem 1.2.1. _2~(~))?) is an orthocomplete orthomodular poset with 
respect to the following partial order and orthocomplement: 

(1.2.10) [X]:t,~ -< [Y]:u~ iff for any Boolean locale Z in ~))~, Y ±m~ Z 
implies X _k~,~ Z. 

L 
(1,2.1 I) [X]:~,¢ = [Y],~, where Y is a Boolean locale in ~3~ such that X 

±,~ Y and X O ~  Y is ~)~-maximal. 

For the proof of the above theorem and other details on the theory of 
manuals of Boolean locales, the reader is referred to Nishimura (1993b, 
1995 a). 

Given a Boolean locale X, an X-weight is a function Px from ~.~(X) to 
R÷ = {r ~ R I r  --> 0} abiding by the following conditions: 

(1.2.12) Px is completely additive in the sense that for any dis- 
joint family {x~,}~,~A of elements of ~ (X)  with x = sup~A 
x~, px(x) = E~A px(xD. 

(1.2.13) Px is almost finite in the sense that there exists a family 
{Xx}x~A of elements of  ~ ( X )  with supx~A Xx = lx and 
px(xx) < +oo for any h E A, where Ix is the unit element of 
the Boolean algebra ~.~(X). 

An X-weight Px naturally induces a Borel measure Px on the Stone 
space f ix of the Boolean algebra .~(X). Given a Borel measurable function 
f o n  l~x, we write f x f d p x  for fnxfd-Ox provided that the latter is meaningful 
in the standard sense. 

Given a manual ~)~ of Boolean locales, an ~)J2-weight is a family 
{Px]xeOb ~ of X-weights Px for all X e Ob ~ subject to the following 
condition: 

(1.2.14) If {Xx -~ X}x~A is an ~JYUcoproduct diagram in ~392, and x e 
~ (X) ,  then px(x) = E ~ A  Pxx(~(f~)(x)) • 

1.3. Booleanizat ion  

Let X be a Boolean locale with B = ~'(X), which shall be fixed 
throughout this subsection. A B-valued set is a pair of a set X and a function 
[[" = • ]]Xx: X × X --> B satisfying 

(1.3.1) [Ix = x']]Xx = [Ix' = x ~  
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(1.3.2) Ix = x'~Xx ̂  I[x' = x " ~  --< ~x = x"~x 

for all x, x ' ,  x" E X. Unless confus ion may arise, I" = "~x is often abbreviated 
to ~I" = • ~]x, ~. = . ~x, or IT- = • ~. The  X-set  (X, I" = "~Xx) is often denoted 
simply by X. 

We denote by B E n  s.(X) the category o f  B-valued  sets ,  in which a morph-  
ism from (X, I" = "ix) to (Y, I" = "~x Y) is a function ~: X × Y --> B satisfying 

(1.3.3) Ilx = z'~Xx ̂  ¢(x, y) -< z(x', y) 
(1.3.4) ¢(x, y) ^ Iy  = y'll~ <- ¢(x, y ' )  
(1.3.5) ~(x, y) ^ ~(x, y ' )  --< [[y = y ' ]x  r 
(1.3.6) Vy~ v ~(x, y) = Ix = xl] x 

for all x, x '  E X and y, y '  E Y. We denote by BEns0(X) the full subcategory 
of  small0 B-valued sets of  the category BEns(X) .  

Given a B-valued set (X, I[" = • ]]Xx), a function ¢r: X --> B is called a 
s ing le ton  if  it satisfies 

(1.3.7) -rr(x) ^ Ix = x']]Xx --< "rr(x') 
(1.3.8) -rr(x) ^ w(x')  <-- [Ix = x ' ~  

for all x, x '  c X. It is easy to see that any x ~ X gives rise to a singleton 
{x} assigning, to each x '  E X, [Ix = x ' ~  E B. The B-valued set (X, I" = " ] ~  
is said to be an X - s e t  if  every  singleton is o f  the form {x} for a unique x 
X. An X-set (Y, I[" = "]lx v) is said to be an X - s u b s e t  of  another  X-set 
(Z, [[. = • ]~0 if Y is a subset of  Z and [[. = • Ix v is the restriction of  ~" = • ]]z. 
Given two X-sets (Xj, ~" = "llXx ') and (X2, I[" = "]~),  their X - p r o d u c t  is 
(Xl × x  X2, ~" = .~l×xX_~), where: 

(1.3.9) Xt × x  X2 = {(Xl, xz)l~x~ = Xm~x ~ = ~x2 = x2~Xx2}. 
(1.3.10) I(xm, x2) = (x'l, x~)]Xx ~xxx2 = ~Xl = x'l]~ I ^ ~x2 = x ~  for any 

(xl, x2), (xl, x~) ~ X~ × x  X2. 

We denote by BEns (X)  the full subcategory o f  X-sets o f  the category 
BEns(X) ,  in which a morphism from an X-set  (X, I" = "]]Xx) to another  X- 
set (Y, [[- = • ]1~ is known to be representable also by a function f f rom X 
to Y satisfying 

(1.3.11) Ix = X'~x --< ~[f(x) = f ( x ' ) ~  
(1.3.12) ILl(x) = f ( x ) ] ~  <- Ix  = x~x 

for all x, x '  ~ X. Such a function f is called an X - f u n c t i o n  from the X-set 
(X, ~. = .]ix) to the X-set (Y, [[. = .DxV). As we know well, the inclusion 
functor ix: BEns(X)  ---) BEns (X)  is an equivalence,  so that it has a left 
adjoint functor  ax: BEns(X)  ---) BEns(X) .  We denote by BEns0(X) the full 
subcategory of  smaU0 X-sets of  the category BEns(X) .  
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Given an X-set (X, ~. = . ]]Xx), an element x of  X is said to be total if 
[Ix = x]].Xx = Ix, where lx is the unit element of  the Boolean algebra B. The 
X-set (X, [[- = • ix) is said to be total if it has a total element. 

A family {e~,b,~a of  elements of  B is called a partition of  unity of B if 
ex ^ ex, = 0x for any h :~ X', where 0x stands for the zero element of  B. 
An X-Set is a pair of  a nonempty set X and a function [[. = • ix: X X X 
B satisfying 

(1.3.13) [Ix = x]] x = lx 
(1.3.14) [Ix = x'~ x = [Ix' = x~ x 

( 1 3 . 1 5 )  I x  = ^ - -  --- - -  

for all x, x ' ,  x" • X and 

(1.3.16) For any partition {e~,}x~a of unity of  B and a family {X~,b, EA 
of  elements of X, there exists a unique x ~ X with ~x = xx]] x 
>- eh for all h • A. 

We denote by BENS(X) the category of X-Sets, in which a morphism 
from an X-Set (X, [[. = .]]Xx) to another X-Set (Y, [[. = .]~) is a function f :  
X ---) Y satisfying 

(1.3.17) [Ix = x']Xx --< ~ (x )  = f ( x ' ) ~  

for all x, x '  e X. 
Any total X-set (X, I[" = • ]Xx) gives_an X-Set (X, [[. = . ~ ) ,  where 

= {x ~ Xl~x = X~Xx = Ix} and ~. = . ix is the restriction of  [[. = "~x to 
X. This yields an equivalence between the full subcategory of total X-sets 
of the category BEns(X) and the category BENS(X), so that henceforth the 
distinction between total X-sets and X-Sets will be blurred. 

The category BEns(X) is an example of  a Boolean localic topos, so that 
it enjoys the following first Boolean transfer principle. 

Theorem 13.1. The topos BEns(X) enjoys all classical mathematics 
(=mathematics  based on classical logic). 

The principle plays a decisive role in Booleanization, which precedes 
logical quantization. A platitude in applying the principle to concepts and 
theorems is "Booleanize . . . .  " For the detailed explanation on the above 
theorem, the reader is referred to Nishimura (n.d.-a). Here we content our- 
selves with representing the sets of  complex numbers and extended real 
numbers within the topos BEns(X). Let f~ be the Stone space of  the Boolean 
algebra B. Then they are represented by the set Cc(X) of  complex-valued 
Borel functions on 12 and the set C~(X) of  extended-real-valued Borel func- 
tions on f~, respectively, where two functions on ~ are identified provided 
that they agree except for some meager Borel subset of  12. Each element of  
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B is identified with its corresponding clopen (closed and open) subset of f l  
and, at the same time, with its characteristic function, so that B can be put 
down at a subset of Cc(X) and of C~(X). Similarly, the sets C and R can be 
reckoned to be subsets of Cc(X) and C~(X), respectively, by identifying each 
element of C or R with its corresponding constant function on ~ .  The set 
Cc(X) as well as C~(X) can be regarded as an X-Set with respect to: 

(1.3.18) ~e~ = 13]Ix = sup{e e Blee~ = e13} for all cz, 13 of  Cc(X) or 
of C~(X), respectively. 

The X-Sets Cc(X) and C~(X) inherit their algebraic structures from the 
set C of complex numbers and the set R of extended real numbers, respec- 
tively. By way of example, the (complex) conjugation in C gives rise to the 
pointwise conjugation in Cc(X), namely, 

(1.3.19) ~(oJ) = e~(to) for any cx e Cc(X) and to ~ f l .  

By simply interpreting the notion of a small category within the topos 
BEns(X), we get the notion of an X-category., which is externally a six-tuple 

= (Ob ~', Mor ~ ,  d~, r~, iG,  %), where: 

(1.3.20) Ob ~ and Mor ~ are X-sets. 
(1.3.21) d~-and r.e are X-functions from Mor ~ to Ob ~.  
(1.3.22) id~ is an X-function from Ob ~ to Mor ~ such that 

~x = y]IOb~ = ~id~(x) = id~(y)]Ix M°r ~ for all x, y ~ Ob f~. 
(1.3.23) o~ is an X-function from Mor ~ ×Ob'~ Mor ~' to Mor ~.  
(1.3.24) If we regard Ob ~ and Mor ~' as mere sets, then the six-tuple 

(Ob ~,  Mor ~'~, d~., re, iG ,  °,-) is a category in the usual sense. 

By way of example, the totality of BEns0(X~)'s for all e e B naturally 
forms an X-category to be denoted by ,-~,~0(X), as explained in detail in 
Nishimura (1995b, Example 1.1). 

By interpreting the notion of a functor of small categories within the 
topos BEns(X), we get the notion of an X-functor from an X-category ~ to 
an X-category .~, which is a functor from the category ~ to the category 
satisfying the following condition: 

( 1.3.25) The assignmentf  e Mor ~ ~ J ( f )  e Mor ..~ is an X-function. 

1.4. Relat ions  Be tween  Two  Boo lean iza t ions  

Let f: X_ ---> X+ be a morphism of Boolean locales, which shall be fixed 
throughout this subsection. Let B= = .~_~(X+_) and let f~+_ be the Stone spaces 
of B_~. Given an X+-set (X, 1[. = .]]Xx+), the pair (X, ~(f)([[- = .]Ix+)) is a 
B_-valued set, which gives rise, after the application of  the functor ax_: 
BEns(X_) ---> BEns(X_), to an X_-set f*(X, ]I. = -~+). The function f* 
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from Ob BEns(X+) to Ob BEns(X_) can readily be extended to a functor 
from BEns(X.) to BEns(X_), which we denote by the same symbol f*. 

The following is the second Boolean transfer principle, which plays a 
decisive role in connecting two Booleanizations (over distinct Boolean 
locales). 

Theorem 1.4.1. The functor f*: BEns(X+) ~ BEns(X_) preserves every 
(many-sorted) first-order structure. 

By way of example, f* induces a functor f~rp from the category Grp(X+) 
of groups within the topos BEns(X.) to the category Grp(X_) of groups 
within the topos BEns(X_). For the proof and the exact meaning of the above 
theorem, see MacLane and Moerdijk (1992, Chapter IX, §7, Proposition 2, 
and Chapter X, §3, Corollary 4). 

The complete Boolean homomorphism 9 ( f ) :  B.  --4 B_ induces a contin- 
uous mapping '-JP(0: ~ -  --~ f~. by the so-called Stone duality. This gives 
rise to a function c~ E Cc(X+) ,--. o~ o ,Y(f) c Cc(X-), which we denote by 

Given X+-sets (X., [[- = .]]x~), a function/2 X÷ --~ X_ is called an f- 
function from the X.-set (X÷, [[- = . ]ffx-~) to the X_-set (X_, [[. = • ]]XT_) if 
it satisfies 

(1.4.1) ,.@(f)([x = X'~x~) --< ~f(x) = f(x')]lXx2 
(1.4.2) ~[f(x) = f(x)]]XxT_ < ~(f)(~x = X~x +) 

fo~ all x, x' ~ X÷. Since the functor ax_ is left adjoint to the functor ix_, we 
have the following result. 

Proposition 1.4.2. There is a bijective correspondence between the f- 
functions from (X÷, [[- = -~x +) to (X_, I[" = "]]xX2) and the X_-functions 
from I*(X+, [[. = "~++) to (X_, [[- = "]]Xx-). 

Given X~-categories ~'+, a functor J -  from the category W+ to the 
category W_ is called an f-functor if it yields the following condition: 

(1.4.3) The assignmentf  ~ MorW+ ,-. ~--(f) ~ Mor .W_ is an f-function. 

1.5. Quantization 

Let us introduce the category to be denoted by BCat. Its objects are all 
pairs (X, 5~/) of a Boolean locale X and an X-categoryJ .  A morphism from 
(X, J )  to (Y, ~ )  in BCat  is a pair (f, .7)  of a morphism f: X ~ Y in BLoc 
and an f-functor 3-: ~ ~ ~¢. The composition (g, if)  o (f, ,7)  of morphisms 
(f,.J-): ( X , J )  --~ (Y,.~) and (g, ~):  (Y,~)  ~ (Z, ~') in BCat  is defined to 
be (g o f,,.97o if). As discussed in Nishimura (1995b, §3), the category BCat  
has small coproducts. The assignments (X, 5e3 E Ob BCat ~ X ~ Ob BLoc 
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and ( f , 3 )  ~ Mor BCat  ~ f ~ Mor BLoc constitute a functor to be denoted 
by OBLoe. 

We now introduce a category to be denoted by BObj .  Its objects are 
all triples (X, s¢', a) such that (X, o~¢3 E Ob BCat  and a is a total object of  
the X-category o~/. A morphism from (X, J ,  a) to (Y, ~ ,  b) in BObj  is a 
triple (f, J _ / ' )  such that (f, ~--) is a morphism from (X,o~) to ( Y , ~ )  in the 
category BCat  a n d / ' i s  a total morphism from J~b to a in the X-categoryo#. 
The composition (g, ~ ,  .~) o (L .~, ,/) of (f, ~ , , / ) :  (X,y/, a) --~ ( ~ . ~ ,  b) and 
(g, .~,,~): (Y,,5~3', b) --> (Z, of, c) in BObj  is defined to be (go f,.~-o ~ ' / ' o  @).  
It is easy to see that the category BObj  has small coproducts, The assignments 

( X , J ,  a) E Ob BObj  ~ ( X , J )  E Ob BCat  

(f, J , f )  E Ob BObj  ~ (f ,9-) ~ Mor BCa t  

constitute a functor from the category BObj  to the category BCat  to be 
denoted by OBCat. 

Let 9.~ be a manual of Boolean locales, which shall be fixed throughout 
the rest of  this subsection. An empirical framework over ~ is a functor do 
from ~ to BCat  subject to the following conditions: 

(1.5.1) It maps ~J)2-coproduct diagrams to coproduct diagrams in BCat.  
(1.5.2) OaLo~ o dO is the identity functor of ~.~2~ into BLoc. 

For an empirical framework do over ~27~, we denote by do,~, the function 
with the same domain of do such that do(X) = (X, do~., (X)) for each X 
Ob ~Y~ and do(f) = (f, do.,,~ 03) for each f ~ Mor ~YJ~. 

Given an empirical framework do over ~3~, we now introduce a category 
to be denoted by EObj(do). Its objects are all functors ~ from ~J)2 to BObj  
abiding by the following conditions: 

(1.5.3) 

(1.5.4) 

It maps ~)Lcoproduct diagrams in ~32 to coproduct diagrams 
in BObj .  
08Ca,  o ~ = do. 

Given such a functor ~: ~ --> BObj ,  we denote by ~¢~. the function 
with the same domain of  ~ such that the value of  ~,,~ ( • ) is the third component 
of the triple ~(- ) .  A morphism from ~ to (S~ in EObj(do) is an assignment 

to each X E Ob ~)~ of  a total morphism ~x: ~,~ (X) --~ ~ (Y) satisfying 
the following condition: 

(1.5.5) The diagram 
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is commutative for every f: X ---> Y ~ Mor ~)2~. 

The composition ~q o ~ of morphisms ~: ~ ---> 63 and vl: 63 ---> g) in 
EObj(qb) is defined to be the assignment X ~ Ob ~ ~ Xlx o ~x. 

1.6. Hilbert Space Theory 

Let H be a Hilbert space with inner product ( -, • ), which shall be fixed 
throughout this subsection. The main purpose of this subsection is to review 
some celebrated theorems, which will be Booleanized and then made empiri- 
cal in later sections. Let us begin with the so-called square root lemma. 

Theorem 1.6.1. For any bounded positive operator A on H, there exists 
a unique bounded positive operator B on H with A = B 2. Furthermore, B 
commutes with every bounded operator on H which commutes with A. This 
B is denoted by At/z. 

Proof See Theorem VI.9 of Reed and Simon (1972). • 

Recall that a bounded operator T on H is called: 

(1.6.1) Self-adjoint if (Tx, y) = (x, Ty) for all x, y ~ H. 
(1.6.2) Positive if (Tx, x) >- 0 for all x ~ H. 

It is well known that a bounded positive operator is self-adjoint. A 
proposition operator on H is a idempotent bounded self-adjoint operator. A 
unitary operator on H is a Hilbert map of  H onto itself. 

Proposition 1.6.2. If a Hilbert subspace K of H is invariant under a 
bounded self-adjoint operator A, then the orthogonal complement K '  of K 
in H is also invariant under A. 

Proof Let PK be the projection operator corresponding to K and I the 
identity operator on H. Then the invariance of  K under A is equivalent to 
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PKAPK = A P x ,  which implies PKAPK = (PKAPK)* = (APK)* = PKA. There- 
fore A P x  = PKA.  This implies 

(I - Px)A( I  - PK) = A - APK + P x A  - PKAPx  = A - APK 

= A( I  - PK) 

which is tantamount to the invariance of K ± under A. • 

Corol lary  1.6.3. I fa  Hilbert subspace K o f H  is invariant under a bounded 
self-adjoint operator A, then it is also invariant under A ~/2. 

P r o o f  Since K is invariant under A, A commutes with PK by the above 
proposition, which implies by Theorem 1.6.1 that A ~/2 commutes with PK. 
Therefore K is invariant under A1/2. • 

A Boolean version of the following simple proposition will be useful 
in subsequent sections. 

Proposi t ion 1.6.4. Let H'  and K be Hilbert subspaces of H and K' a 

Hilbert subspace of K. Let PH' be the projection operator of H onto H'  and 
Px' the projection operator of K onto K'. Then Pr ,x  = PH'X for all x ~ K iff 
K' C H'  and K '± C H 'J-, where K'  ± denotes the orthogonal complement 
of K '  in K and H '± denotes the orthogonai complement of  H' in H. 

Recall that a (possibly unbounded) operator T on H is a linear mapping 
from a linear subspace 2 ( T )  of H into H. It is called sel f -adjoint  if the 
orthogonal complement of the graph F(T) = {(x, T x ) t x  E :J(T)} of T in H 
• H is { ( - T x ,  x ) l x  E _~(T)}. It is easy to see that a bounded operator is 
self-adjoint in the earlier sense iff it is so in the present sense. It is also easy 
to see that every self-adjoint operator is a closed, densely defined operator. 

We denote byS~3'0(R) the field of subsets of R generated by ( - ~ ,  a) = 
{r ~ R l r  < a} and ( - ~ ,  a] = {r e R I r  -< a} for all a e R. The tr-field 
generated by "~0(R) is denoted by 2 ( R ) .  A spectra l  measure  is a function 
E on ~.~0(R) subject to the following conditions: 

(1.6.3) E(M) is a projection operator for each M e .~0(R). 
(1.6.4) E(R) = I. 
(1.6.5) E ( M  U N) = E(M) + E(N) for any disjoint sets M and N 

in ,-~0(R). 
(1.6.6) If {M,},~N is an increasing sequence of sets in .~o(R) such 

that t.)~ N M,, is also in ~o(R) ,  then E(U,~N M,,) = LUB,,~N 
E(M,,), where LUB,,~N E ( M , )  stands for the least upper bound 
of E(M,,)'s within the lattice of all projection operators. 

Given a spectral measure E, each x ~ H determines a measure M E 
.-~0(R) ~ (x, E(M)x), which can be extended uniquely to a measure on .~(R)  
usually to be denoted by d(x, Exx). 
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The celebrated spectral theorem for self-adjoint operators goes as 
follows: 

Theorem 1.6.5. Each spectral measure E determines a unique self-adjoint 
operator on H, usually denoted by f+_~.h dEx, subject to the following 
conditions: 

(1.6.7) .~(f-L-_~X dEx) = {x • HI f+_~X 2 d(x, Exx)}. 
(1.6.8) (x, (f%=k dEx)x) = f+_~h d(x, Ehx) for any x • _~(f_+~X dEh). 

The above mapping E ~ f+_~h dEx gives rise to a bijective correspondence 
between the spectral measures and the self-adjoint operators on H. 

A mapping assigning, to each t • R, a unitary operator U(t) on H is called 
a one-parameter  unitary group on H if it satisfies the following conditions: 

(1.6.9) 
(1.6.10) 

U(s + t) = U(s)U(t)  for all s, t • R. 
The mapping t E R ~ U(t) is strongly continuous. I.e., for 
any x • H and any to • R, t --) to implies U(t)x ---) U(to)X. 

The following two theorems are well known as Stone's theorem. 

Theorem 1.6.6. Let A be a (possibly unbounded) self-adjoint operator 
on H. Then the mapping t • R ~ exp( i tA)  is a one-parameter unitary group 
on H. 

Theorem 1.6. 7. Let t • R ,-* U(t) be a one-parameter unitary group on 
H. Then there exists a self-adjoint operator A on H with U(t) = exp(i tA)  for 
all t • R. For any x • H, x belongs to the domain ~ ( A )  ofA iff lim,_,o{ [U(t)x 
- x]lt} exists, in which we have Ax  = i - l  l im,~o{[U(t)x  - x]/t}. 

2. E M P I R I C A L  H I L B E R T  SPACES 

2.1. Boo l ean iza t ion  

Let X be a Boolean locale, which shall be fixed throughout this subsec- 
tion. Let B = 9 ( X ) .  By interpreting the notion of  a pre-Hilbert space in the 
topos BEns(X), we get the notion of  an X-pre-Hi lber t  space, which can be 
defined as a Cc (X) -modu le~endowed  with a function (- ,  • )~: J ' f  X .)U--> 
Cc(X) subject to the following conditions: 

(2.1.1) For any family {ex}~A of  elements in B and any x, y E Cc(X), 
if exx = exy  for any h • A, then (sup~,~A ex)x = (sup~A ex)y. 

(2.1.2) For any family {x~}x~A of  elements o f ~ a n d  any partition 
{ex}x~A of unity in B, there exists a unique x • Z s u c h  that 
e~x = exx~ for any h • A. 
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(2.1.3) (axl + [3x2, y)~. = c~(xl, y)~. + [3(x2, y)~rfor any ~, 13 • Co(X) 
and any xi, x2, y • ~ .  

(2.1.4) {x, y),v = (y, x)y for any x, y • .~. 
(2.1.5) (x, x),r >- 0 for any x • ~ ,  and the equality holds only if x = 0. 

The function ( ", • )~ is often denoted simply by ( -, • ) unless confusion 
may arise. The notation IIxl[ stands for (x, x) m. The X-pre-Hilbert space is 
usually denoted simply by ~Urather than exactly by ( ~ ,  ( . ,  • ).~). The pre- 
Hilbert s p a c e Y c a n  naturally be made an X-Set provided it is endowed with 
the function I[" = - ] ]~ :X  × 2'---~ B to be defined as follows: 

(2.1.6) [Ix = yl]~ = sup{e • ~ ( X ) l e x  = ey} fo rx ,  y • . ~ .  

Proposition 2.1.1. (:~, [[. = • ]]'~') is an X-Set. 

Corollary 2.1.2. The action of  Co(X) on Y is an X-function from Co(X) 
×x  X to Z .  

A sequence {x,},~N in an X-pre-Hilbert s p a c e , i s  said to X-converge 
to an element x of  9~, in notation X-lira,,_,= x, = x, if for any • > 0, there 
exist a partition { e~, } × ~ A of  unity in B and a family { n~, } x ~ A of natural numbers 
satisfying the following condition: 

(2.1.7) For any ~. • A and any natural number n > n~, llexx, - e~xll 
< • .  

The above notion of X-convergence can be generalized in various ways. 
By way of example, for a family {x,~},~R × of elements of an X-pre-Hilbert 
space ~ indexed by R x = {t • R I t  4: 0}, we write X-limt_,0 x, = Xo with 
;Co • ~;"if for any • > 0, there exist a partition {e~.}a~A of  unity of B and a 
family {8~,}~A of  positive numbers satisfying the following condition: 

(2.1.8) For any h e A and any t • R x with Itl < 8×, Ilexx, - exxll 
< • .  

Let ~ be an X-pre-Hilbert space. A sequence {x,,}n~N in Y is said to 
be X-Cauchy if for any • > 0, there exist a partition {ex}x~A of  unity in B 
and a family {nx}x~a of  natural numbers satisfying the following condition: 

(2.1.9) For any h • A and any natural numbers m, n larger than nx, 
[lexx,, - exx,,ll < •. 

An X-pre-Hilbert space ~ is called an X-Hilbert  space if any X-Cauchy 
sequence {x, },,~N X-converges to an element x in ~ :  This is the interpretation 
of the notion of  a Hilbert space in the topos BEns(X). For another formulation 
of a X-Hilbert space, see Ozawa (1984), who called it an AW*-module. If B 
happens to be the projection lattice of an Abelian von Neumann algebra, the 
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notion can be defined as the normal module over the von Neumann algebra, 
as Ozawa (1983) did. 

An X-subset 2 " o f  an X-pre-Hilbert space Y is said to be X-dense in 
Y if for any x e Y t h e r e  exists a sequence {x,,},,~N of elements o f f " w i t h  
X-lim,,__,= x~ = x. An X-Hilbert space Y is said to be an X-completion of 
an X-pre-Hilbert space Y if Y is X-dense in ~.. By using the first Boolean 
transfer principle, we can deduce from the unique existence of a completion 
of a pre-Hilbert space that there exists an essentially unique X-completion 
of a given X-pre-Hilbert space. 

By interpreting the notion of a Hilbert subspace of a Hilbert space within 
the topos BEns(X), we get the notion of an X-Hilbert subspace of an X- 
Hilbert space Y. It is defined as a C(X)-submodule Z '  of  Y which is an 
X-Hilbert space with respect to the restriction of (-, -).,r to .,~'. The X- 
orthogonal complement of Y '  in )E, denoted by ~ t , . ,  is defined to be {x 

Y l(x, y}g = 0 for any y ~ Y '  }, which is easily seen to be an X-Hilbert 
subspace of Y. 

By interpreting the notion of a linear map of Hilbert spaces in the topos 
BEns(X), we get the notion of an X-linear map from an X-Hilbert space 
to an X-Hilbert space X2, which is a function tO from ~ to2",62 subject to 
the following conditions: 

(2.1.10) q~(x + y) = q0(x) + q~(y) for any x, y e 8 -  
(2.1.1 1) q~(ax) = (xtO(x) for any c~ e Cc(X) and any x ~ .2g'~l. 

By interpreting the notion of a Hilbert map of Hilbert spaces in the 
topos BEns(X), we get the notion of an X-Hilbert map from an X-Hilbert 
space Y4 to an X-Hilbert spaceW~, which is an X-linear map from ~ to 
subject to the following condition: 

(2.1.12) (to(x), qo(y));r~ = (x, y)~.j for any x, y E Zt .  

We denote by BHii(X) the category of X-Hilbert spaces and X-Hilbert 
maps, whose .full subcategory of smallo X-Hilbert spaces is denoted by 
BHil0(X). Just as the totality of BEns0(X~)'s (e ~ B) forms an X-category 
J~-~0(X),  the totality of BHil0(Xe)'S (e ~ B) forms an X-category.~,Tuc/(X). 

2.2. Relations Between Two Booleanizations 

Let f: X_ ---) X+ be a morphism of Boolean locales, which shall be fixed 
throughout this subsection. Given X_.-Hilbert spaces 27f+, an f-linear map from 

toY_ is a function q~ from ~ to ~U_ subject to the following conditions: 

(2.2.1) q~(x + y) = to(x) + to(y) for any x, y e ;,U+. 
(2.2.2) to(ax) = ~c(C~)~p(x) for any e t e  Co(X+) and any x e 7/+. 
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It is easy to see the following result. 

Proposition 2.2.1. An f-linear map from a Hilbert X+-space Y+ to a 
Hilbert space ,8"~_ is an f-function from the X+-set 2g+ to the X_-set 7f_, 
where W'_~ are regarded as X+-sets in the sense of Proposition 2.1.1. 

An f-linear map go from an X+-Hilbert space ,~2:+ to an X_-Hilbert space 
~ _  is called an f-Hilbert map from ~+ to ~ _  if q~ satisfies the following 
condition: 

(2.2.3) (go(x), go(y)).- = ~c((X, y).~) for any x, y e ~+. 

Given an X+-Hilbert space S+, the second Boolean transfer principle 
guarantees that f*~+ is an X_-pre-Hilbert space, whose X_-completion is 
also denoted by f*~ff~+. Henceforth f*~_ shall denote the latter entity unless 
stated to the contrary. The canonical f-Hilbert map from ,;U+ to f*7~+ is denoted 
by rt.,~, s. 

As in Proposition 1.4.2, we have the following result. 

Proposition 2.2.2. Given X+-Hilbert spaces ~± ,  the assignment of go o 
"q,~_,f to each Hilbert X_-map go: f*gF~ ---) ~C gives a bijection between the 
X_-Hilbert maps from f*~_~ to Yf_ and the f-Hilbert maps from ~ to ~C. 

Proof Booleanize the so-called B.L.T. Theorem (Reed and Simon, 1972, 
Theorem 1.7). • 

Let ..:U_~ be X+-Hitbert spaces. Given an X_-Hilbert map go: f*~_ ---~Y_, 
we denote go o vl~,÷, f by soy. Given an f-Hilbert map t~:W+ ---) ,Y L, we denote 
by ~^ the X_-Hilbert map from f*,U+ to .YC with qJ = ~^ o ,q,~÷,f. 

The assignment ~ ~ Ob BHilo(X+) ~ f*~+ E Ob BHilo(X_) can be 
extended readily to a functor from the category BHilo(X+) to the category 
BHil0(X_), which we denote by finn,0. The totality of f[e]i~nilo'S for all e E 
,~(X+) forms an f-functor from the X+-category '~J?~db(X+) to the X_-category 
, ~ / o ( X - ) ,  which we denote by f*~g~'o" 

2,3. Quantization 

Let ~3~ be a smallo manual of Boolean locales, which shall be fixed 
throughout this subsection. We denote by f~A~if0(~)~) the empirical framework 
over ~J3~ consisting of assignments X ~ Ob ~,Y~ ~ ( X , , ~ % ( X ) )  and 

f: X_ --) X+ ~ Mot ~)32 ,-, (f, f*'*,0): (X_,JY~?0(X_)) --~ (X+,,~,~,'/b(X+)) 

An empirical Hilbert space over ~)J~ or simply an ~))~-Hilbert ~)3~-space is a 
map ,~) assigning of a small0 X-Hilbert space ,~(X) to each X ~ Ob ~)J~ and 
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of an f-Hilbert map g'~(f): g~(X+) ---> ,~(X_) to each f: X_ ---> X+ E Mor ~2~ 
subject to the following condition: 

(2.3.1) The assignments X E Ob ~)3~ ~ (X, ,~Y0(X) ,  ,f)(X)) and 
f: X_ ---> X+ E Mor ~ ~ (f, f.*'~,~o, g)(f)") constitute an object 
of  EObj (~ i [o (~)~) ) .  

An ~)3~-Hilbert ~)~-space ~ '  is said to be an ~2~-Hilbert ~J~-subspace of 
an ~)J~-Hilbert ~ - s p a c e  8) if it satisfies the following conditions: 

(2.3.2) For any X ~ Ob ~.]~, (SJ'(X) is an X-Hilbert subspace of  5~(X). 
(2.3.3) For any [: X_ ---> X+ ~ Mot  ~.]3~, we have 5)(t')(5~'(X+)) C 

5-)'(X_) and ©(f)(8")'(X+) ±) C ,S)'(X_) j-, where ,~'p'(X=) ± denote 
the X+_-orthogonal complements of  8")'(X_~) in A~(X+_). 

We conclude this section by relating ~.]3~-Hilbert spaces to partial Hilbert 
spaces of  Gudder (1986a). Let p = {Px}x~Ob~ be an ~Uweight and ~ an 
~J~-Hilbert ~37-space. We denote by H(~)) the set of  all families {Xx}x~ob ~ 
abiding by the following conditions: 

(2.3.4) For any X ~ Ob ~).~, Xx ~ ~3(X) and f x  IIx×ll 2 dpx < + ~ .  
(2.3.5) For any ~)~-maximal Boolean locales X, ¥ in ~,~, fx  [[Xxl[ 2 dpx 

= fv IIxyII 2 dp,~ 
fh 

(2.3.6) If {Xx --> X}X~A is an ~2~-coproduct diagram in ~2~, then ~(f)(xx) 
= Xx~ for any h ~ A. 

The set tt(~3) can be reckoned as a partial Hilbert space with respect 
to the following reflexive, symmetric relation S. 

(2.3.7) {Xx}x~Ob ~l S { Yx}xeOb ~l iff fx(Xx, Yx) dpx = fv(xv, Yv) dpv 
for all sJJ~-maximal Boolean locales X, Y in ~JY~. 

3. BOUNDED OPERATORS ON EMPIRICAL HILBERT SPACES 

3.1. Booleanization 

Let X be a Boolean locale and • a n  X-Hilbert space. These entities 
shall be fixed throughout this subsection. By interpreting the notion of  a 
bounded operator on a Hilbert space in the topos BEns(X), we get the notion 
of an X-bounded X-operator on ~ which is an X-linear m a p g o f  Z i n t o  
itself subject to the following condition: 

(3. t.1) There exists ct E Ca(X) with c~ --> 0 such that ]13-(x)[t ----- c~[[x[[ 
for any x ~ 

By way of example, an X-Hilbert map of  X into itself is an X-bounded 
X-operator on Z .  If it is onto, then it is called an X-unitary X-operator on 
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An X-bounded X-operatorgon Y'f' is called X-positive if (3k, x) > 0 
for any x E ,U.. This notion is the interpretation of a positive bounded operator 
on a Hilbert space within the topos BEns(X). By using the first Boolean 
transfer principle, we can get the following theorem directly from Theo- 
rem 1.6.1. 

Theorem 3.1.1. For any X-bounded X-positive X-operator ,~¢' on ~ ,  there 
exists a unique X-bounded X-positive X-operator ' J  on ~ with ~q = ,~2. 
Furthermore, ~ commutes with every X-bounded X-operator on ~ w h i c h  
commutes with ~/. 

As in standard mathematics, the above ~:~ is denoted by ocf ~a. 
For any X-bounded X-operatorJon Y a n d  any X-Hilbert subspace of 

~invariant  under~,~-15~ denotes the restriction of 3-- to ,~,. 

Proposition 3.1.2. Let o~" be an X-bounded X-positive X-operator on )Y 
and ,YS( an X-Hilbert subspace of )U invariant under ,ct. Then ~ / 2  tYS( = 
(o~" ~,0 m . 

Proof Booleanize Corollary 1.6.3. • 

An X-bounded X-operator 5~on ~ is called X-self-adjoint if (:Ux, y} 
= (x, Y y) for any x, y ~ ~ This notion is the interpretation of a bounded 
self-adjoint operator on a Hilbert space in BEns(X). Since every bounded 
positive operator on a Hilbert space is always self-adjoint in standard mathe- 
matics, the first Boolean transfer principle reveals that an X-bounded X- 
positive X-operator is always X-self-adjoint. An X-bounded idempotent X- 
self-adjoint X-operator on ~ is called an X-projection X-operator on 

By Booleanizing the well-known bijective correspondence between the 
Hilbert subspaces of a Hilbert space H and the projection operators on H, 
we have the following result. 

Theorem 3.1.3, For any X-projection X-operator,_@ on ~ ,  5~(~)  is an 
X-Hilbert subspace of ~ .  This gives a bijective correspondence between the 
X-Hilbert subspaces of Z and the X-projection operators on ~ .  

We conclude this subsection simply by commenting that by interpreting 
the notions of the trace Tr (a function from the positive bounded operators 
to the extended real numbers) and a density operator (a bounded positive 
trace-class operator of trace one) within the topos BEns(X), we get the notions 
of Trx and an X-density X-operator. 

3.2. Quantization 

Let ~)3~ be a manual of Boolean locales and ~ an ~)~-Hilbert ~)YUspace. 
These entities shall be fixed throughout this subsection. An ~))~-bounded ~)3~- 
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operator on ~) is an assignment ~, to each X • Ob s),)~, of an X-bounded 
X-operator ~x  on 5)(X) making the diagram 

t~(t) 
,~(x) < ~(x+) 

~x- l t 5 Q  
~(x)< ~(x+) 

t~(f) 

commutative for any 1?: X_ --+ X+ • Mor ~J3~. 
Given ~2R-bounded ~3boperators ~ and g on .S>, the assignment X e 

Ob ~3~ - ~x"~x is easily seen to be an ~)3bbounded ~-operator on ~ ,  which 
is to be denoted by ~ .  In particular, if ~ and '~ happen to be the same, 
<v~ is denoted by ~ 2  

It is easy to see the following result. 

Proposition 3.2.1. An assignment ~, to each X • Ob ~ ,  of an X- 
bounded X-operator ~x on 5>(X) is an ~))~-bounded ~))~-operator on g') iff it 
makes the diagram 

~(x_) < 

5~x- ~ 

~(x)  < 

I)(O ̂  
.... f%(x+) 

i f*SEx÷ 

f%(X+) 

commutative for any f: X_ ~ X+ E Mor ~39~. 

An ~))Ubounded ~-operator  ~ on ~) is said to be s~JLpositive if ~x  is 
X-positive for any X • Ob ~2)2. 

Theorem 3.2.2. For any s,~-bounded ~)3Lpositive ~boperator ,~[ on 5), 
there exists a unique ~-bounded sJd2-positive ~boperator ~ with ~2 = 4[. 

Proof Follows from Theorem 3.1.1 and Propositions 3.1.2 and 3.2.1. • 

An ~bbounded ~))2-operator ~ on ~ is said to be sJ)2-self-adjoint if ~x  
is X-self-adjoint for any X • Ob 92L An ~)Lprojection ~,))~-operator on ~) is 
an sJYUbounded ~3)2-operator ~ such that ~x  is an X-projection X-operator on 
~(X) for each X • Ob ~J)~. 

An ~2)bHilbert ~)~-space ~ '  is said to be an ~-Hilbert ~bsubspace of 
© if it satisfies the following conditions: 
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(3.2.1) 
(3.2.2) 

For any X e Ob ~2~, 5)'(X) is an X-Hilbert subspace of  ,~3(X). 
For any f: X_ ---) X+ E Mor ~)J~, ,~({)(,~'(X+)) C ,f)'(X_), 
~(f)(,~'(X+) ~-) C ,f)'(X_) ± ,  and g?'(f) is the restriction of,~'~(0. 

It is easy to see the following result. 

Theorem 3.2.3. For any ~ -Hi lbe r t  ~))~-subspace 5"p' of  Y?, the assignment, 
to each X ~ Ob ~.1~, of the X-projection X-operator corresponding to the X- 
Hilbert subspace 5)'(X) of ,S)(X) in Theorem 3.1.3 is an ~))~-projection ~))~- 
operator, which gives a bijective correspondence between the ~))~-Hilbert O)~- 
subspaces of ,~) and the ~))~-projection ~))~-operators on g?. 

4. UNBOUNDED OPERATORS ON EMPIRICAL HILBERT 
SPACES 

4.1. Booleanization 

Let X be a Boolean locale and ~ '  an X-Hilbert space. These entities 
shall be fixed throughout this subsection. An X-linear map o~¢" from an X- 
linear subspace_~(.Y--) of  J/~' to )U is called an X-self-adjoint X-operator on 
~ '  if the X-orthogonal complement of  the graph F(..,w') of  ,~  in Z G ~  "~ is 
{ ( - ~ x ,  x) Ix ~ 2 ( ~ / )  }. It is easy to see that an X-bounded X-operator ~ is 
X-self-adjoint in this sense iff it is so in the sense of Section 3. 

By Booleanizing the notion of  a spectral measure, we get the notion of 
an X-spectral X-measure, which is a function ~' on c~0(R) subject to the 
following conditions: 

(4.1.1) ~(M) is an X-projection X-operatoron Y for each M ~ ~ 0 ( R ) .  
(4.1.2) ~ (R)  =,.7, where J i s  the identity X-operator on ~ .  
(4.1.3) ~ (M U N) = g"(M) + L~(N) for any disjoint sets M and N 

in ,-~3'0(R). 
(4.1.4) If {M,,},,~N is an increasing sequence of  sets in ,-~o(R) such 

that ux~N M,, is also in .~o(R), then x ~'(U~en M.) = LUB,,~N 
g(M,),  where LUB,~N g(M,)  stands for the least upper bound 
of g'(M~)'s within the lattice of all X-projection X-operators 
on ,~. 

The measure d(x, Exx) and the integral j-2= in Section 1.6 are Booleanized 
to yield the X-measure d<x, ~xx> and the X-integral x - f  Z=. By Booleanizing 
Theorem 1.6.5, we have the following result. 

Theorem 4.1.1. Each X-spectral X-measure g" determines a unique X- 
self-adjoint X-operator on ~ ,  denoted by X-f+_~h dg'~ ~,, satisfying the follow- 
ing conditions: 
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(4.1.5) :~(X-f_+~X c/~x) = {x ~ ~U~'lX-f+~h 2 d(x, ~xx) ~ CR(X)}. 
(4.1.6) (x, (X-f+-~h cl~x)x) = X-f-+~X(x, ~ x )  for any x 

~(X-f_+~X d ~  ~). 

The correspondence ~ ,--, X-f_+ZX d~x gives a bijective correspondence 
between the X-spectral X-measures and the X-self-adjoint X-operators on Y. 

A mapping ?l assigning, to each t ~ R, an X-unitary X-operator ?l(t) 
on .~. is called a one-parameter X-unitary group on ~-f if it satisfies the 
following conditions: 

(4.1.7) ~,)/[(s + t) = Pl(s)?~(t) for all s, t E R. 
(4.1.8) For any x ~ Y, any natural number n, and any positive number 

e, there exist a partition {ex}~,~a of unity of B and a family 
{6~}h~,x of positive numbers such that for any h ~ A and any 
s, t ~ [ - n ,  n], whenever Is - tl < 6x, Ilex?I(s)x - ex?l(t)xll 

By Theorem 1.6.6 and the well-known fact of classical mathematics 
that every continuous function from a compact metric space to a metric space 
is uniformly continuous, the first Boolean transfer principle gives at once 
the following result. 

Theorem 4.1.2. Let ,;¢ be an X-self-adjoint X-operator on oU and ?l[(t) 
= expx(itm') for each t ~ R, where the function expx stands simply for the 
interpretation of the well-known function exp of  classical mathematics within 
the topos BEns(X). Then ?[ is a one-parameter X-unitary group on ~ .  

By using the first Boolean transfer principle and recalling the well- 
known fact of classical mathematics that any uniformly continuous function 
from a dense subset of a metric space into another metric space can be 
extended uniquely to a continuous function defined on the former metric 
space, we get from Theorem 1.6.7 the following result. 

Theorem 4.1.3. Let ,~[ be a one-parameter X-unitary group on ~ .  Then 
there exists an X-self-adjoint X-operator J on ,;~' with ~l(t) = e x p x ( i t ~ )  
for any t ~ R. The desired .~ is defined for x ~ ~ iff X-lim~_,0 t-~(?l(t)x 
- x) exists, in which we set 

o~x = i- i  X-lim~0 t-t(~l(t)x - x) 

4 . 2 .  Q u a n t i z a t i o n  

Let ~ be a manual of Boolean locales and ~) an ~2)UHilbert ~2)~-space. 
These entities shall be fixed throughout this subsection. An ~)3~-self-adjoint 
~)~-operator on ~ is an assignment 41[, to each X e ~.]3~, of an X-self-adjoint 
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X-operator ,~[x such that for any f: X_ --~ X+ • Mor ~)2 and any x • 
-~(~x+), we have ,q')(f)x • --~(-~[x_) and ~.'~l~x_~(t')x = .~(f)~Ix+X. 

An ~2~-spectral ~3)bmeasure is a function ~ assigning, to each X • Ob 
~£, an X-spectral X-measure @x such that: 

(4.2.1) For each M • ~'0(R), the assignment X • Ob ~)32 ~ ~X(M) 
is an ~))Lprojection ~))~-operator. 

Now we have an empirical spectral theorem as follows: 

Theorem 4.2.1. Given an ~))2-spectral ~2)2-measure @, the assignment X 
• Ob ~))~ ~ X-f+~k d@ x is an ~))~-self-adjoint ~))2-operator on ,93, which is 
denoted symbolically by ~)~-f+_~k d@x. The correspondence @ ~ ~)2~- 
f+_Tk d@x gives a bijective correspondence between the ~))Lspectral ~)~-mea- 
sures and the ~)~-self-adjoint ~2~-operators on g'). 

Proof Follows from Theorem 4.1.1. II 

A mapping 1I assigning, to each X • Ob ~33~, a one-parameter X-unitary 
group LIx on ~)(X) is called a one-parameter ~)J~-unitary group on ~ if for 
any t ~ R, the assignment X • Ob ~2~ ~ lIx(t) is a unitary ~Uoperator on ~'). 

It is easy to see the following. 

Lemma 4.2.2. Let {g'),},~N be an increasing sequence of  Hilbert ~))2- 
subspaces of ~ and ~ an assignment, to each X • Ob s)22, of  an X-bounded 
X-operator on ~(X). Assume that: 

(4.2.2) For each n • N and each X • Ob ~))~, ~),(X) is invariant 
under ~x- 

(4.2.3) For each n • N, the assignment X • Ob ~ ~ ~xlS),(X) is 
an ~ -bounded  ~))2-operator on 5~),. 

(4.2.4) For each X • Ob ~2~, U,,~NX ~'),(X) is X-dense in ,~3(X). 

Then the assignment X • Ob ~2)2 ~ ~ x  is an ~ -bounded  ~22-operator on ~ .  

Theorem 4.2.3. Let ~.)[ be an ~)3~-self-adjoint ~JJ~-operator on ~ and llx(t) 
= expx(it,°lx) for any X e Ob ~ and any t • R. Then 1I is a one-parameter 
~JJ~-unitary group on ~ .  

Proof Use Lemma 4.2.2, in which ~'),, should be taken to be the ~.PL 
Hilbert ~1~-subspace corresponding to the ~))~-projection ~)~-operator X • Ob 
~.)3~ ~ @x([-n,  n]) for each n • N. II 

Theorem 4.2.4. Let 1t be a one-parameter TJ~-unitary group on ,S). Then 
there exists an ~))2-self-adjoint ~.R-operator ?l on £2 with P[x(t) = expx(it~lx) 
for any X • Ob ~)~ and any t • R. 
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P r o o f .  Using the second Boolean transfer principle, it is easy to see that 
for any f: X_ ---> X+ e Mor ~)2~ and any x E &(X+), if 

X- lim t - l ( P ( x ÷ ( t ) x  - x )  
t +--~0 

exists, then 

exists and 

X-lim t - I ( ~ ) t x _ ( t ) 5 ) ( f ) x  - ~ ) ( f ) x )  
t---~O 

X- lim t - l (~ )[x_( t )A ' ) ( f ) x  - 5)(0x) 
t ---->0 

= ~(f)(X-l im t - l ( 9 . [ x + ( t ) x  - x ) )  
t +--->0 

from which and Theorem 4.1.3 the desired result follows readily. • 

5. QUANTUM M E C H A N I C S  

5.1. Standard Quantum Mechanics 

We now recall the skeletal framework of standard quantum mechanics. 
The state space of  a strictly quantum system is usually assumed to be repre- 
sented by a Hilbert space H. The states are represented by density operators 
on H. Physical quantities are represented by (possibly unbounded) self-adjoint 
operators on H. The expectation value of a physical quantity Q in a state S 
is given by Tr(QS). The dynamics of the system is governed by a one- 
parameter unitary group t E R ~ U ( t )  in the sense that the state S ( h )  at 
time t I and the state S(t2) at time t2 are related by: 

(5.1.1) S ( h )  = U(t2 - h ) S ( h ) U ( t 2  - t l )  - l  

By Stone's theorem there exists a self-adjoint operator A with U(t )  = 

e x p ( - i t A )  for all t E R. Therefore, if the state of the system at an instant 
is pure so that the state of  the system at time t is represented by a vector 
x ( t )  in H, the infinitesimal form of the dynamics of the system is depicted 
by the following SchrOdinger equation: 

(5.1.2) i ( d / d t ) x ( t )  = A x ( t ) .  

5.2. Boolean Quantum Mechanics 

Machida and Namiki (1980) have devised a framework for the interaction 
between classical and quantum systems in which a continuous superselection 
rule plays an important role and the so-called reduction of the wave packet 
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is nicely handled. Their many-Hilbert-spaces formalism for concurrent classi- 
cal and quantum systems was refined mathematically by Araki (1980) from 
an operator-algebraic viewpoint, He considered the algebra of observables 
of such a combined system to be generally of a nontrivial center, the operators 
of which behave like classical observables. Finally Ozawa (1986) replaced 
the direct integral of Hilbert spaces by a more general "Boolean Hilbert 
space." As we demonstrated amply in Nishimura (1993a), the Boolean-valued 
analysis of Takeuti (1978) and others can be regarded as a direct descendant 
of direct integral theory. 

Now we will explain briefly Ozawa's (1986) Boolean quantum mechan- 
ics based on Boolean Hilbert space theory. Let X be a Boolean locale. The 
state space is represented by an X-Hilbert space ~ The states are represented 
by X-density X-operators on ~', Physical quantities are represented by X- 
self-adjoint X-operators on ~ The expectation value of a physical quantity 

in a state S p within the topos BEns(X) is given by Trx~SP). The dynamics 
of the system is governed by a one-parameter X-unitary group t E R ~ 9l(t) 
in the sense that the state 2;P(t~) at time t~ and the state ,SP(t2) at time t2 are 
connected by 

(5.2.1) ,2~(t2) = PI(t2 - tOSP(f i )9 l ( t2  - tl) - I .  

By Theorem 4.1.2 there exists an X-self-adjoint X-operator ~" with 9[(t) 
= e x p ( - i t J )  for all t e R. Therefore, if the state of the system at an instant 
is pure so that the state of the system at time t is represented by a vector 
x(t)  in X, the infinitesimal form of the dynamics of the system is depicted 
by the following Schr6dinger equation: 

(5.2.2) i (dX/dXt)x( t )  = ~¢x(t), where 

d x x ( t  + t ' )  - x( t )  
dX  t x( t)  = X-lim t' 

I*'~0 

5.3. Empirical Quantum Mechanics 

If the measuring apparatus is no longer classical but quantum so that it 
is represented not by a single Boolean locale X but by a manual 9,)~ of Boolean 
locales, we are naturally led to empirical quantum mechanics. The state space 
is now represented by an ~,Y)~-Hilbert ~22-space ~'). The states are represented 
by X-density X-operators on ~)(X) for all X ~ Ob ~337. Physical quantities 
are represented by 9)Uself-adjoint 9)~-operators on ~.  The expectation value 
of a physical quantity ~ in a state represented by an X-density X-operator 

within the topos BEns(X) is given by Trx(~x,SP). The dynamics of the 
system is governed by a one-parameter ~J)~-unitary group H in the sense that 



Empirical Quantum Mechanics 1199 

the state at t ime tl r epresen ted  by an X-dens i ty  X-opera torS~(f i )  and the state 

at t ime t2 represented  by  an X-dens i ty  X-operatorS~(t2)  are re la ted  by 

(5.3.1) S'~(tz) = l~[x(t 2 - t l )S '~(t l )Hx(tz  - tt) - t .  

By T h e o r e m  4.2.3 there exis ts  an ~2R-self-adjoint ~ - o p e r a t o r  P[ with 
l lx( t )  = expx(- i tPl~x)  for  all X e Ob  ~.)~ and all t e R. Therefore ,  i f  the 
state o f  the sys tem at an instant  is pure so that the state o f  the sys t em at t ime 
t is represen ted  by  a vec tor  x(t)  in ,~)(X), the inf in i tes imal  form of  the d y n a m i c s  

o f  the sys tem is dep ic ted  by the fo l lowing  Sch r6d inge r  equat ion:  

(5.3.2) i (dX/dXt)x(t)  = ?[xX(t) 
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